
N90-25573

A LABORATORY BREADBOARD SYSTEM FOR DUAL-ARM TELEOPERATION

A. K. Bejczy, Z. Szakaly and W. S. Kim
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, California 91109

ABSTRACT

The computing architecture of a novel

dual-arm teleoperatlon system is des-
cribed in this paper. The novelty of
this system is that (i) the master arm is

not a replica of the slave arm, it is
unspecific to any manipulator and can be
used for the control of various robot

arms with software modifications, and

(ii) the force feedback to the general
purpose master arm is derived from force-

torque sensor data originating from the
slave hand. The computing architecture

of this breadboard system is a fully syn-
chronized pipeline with unique methods

for data handling, communication and
mathematical transformations. The com-

puting system is modular, thus inherently
extendable. The local control loops at
both sites operate at 1000 Hz rate, and
the end-to-end bilateral (force-

reflecting) control loop operates at 200

Hz rate, each loop without interpolation.
This provides high-fidelity control.

This end-to-end system elevates teleoper-
ation to a new level of capabilities via
the use of sensors, microprocessors,

novel electronics, and real-time graphics
displays. The paper concludes with the

description of a graphic simulation sys-
tem connected to the dual-arm teleopera-
tion breadboard system. High-fidelity
graphic simulation of telerobot (called

Phantom Robot) is used for preview and

predictive displays for planning and for
real-time control under several seconds

communication time delay conditions.

High fidelity graphic simulation is
obtained by using appropriate calibration
techniques.

INTRODUCTION

A laboratory breadboard system has been

developed at JPL for dual-arm teleopera-
tion using a novel generalized bilateral
control method for robot (or slave) arm
control. Generalized bilateral control

of robot arms denotes (i) the ability to
control the motion of a robot arm from

another, dissimilar robot arm or device

and (ii) the ability to reflect the

forces sensed by the robot hand back to
the hand of the operator. Since the
controlling device (the hand controller

or HC) is not similar to the robot being
controlled, the HC can be designed to

perform the task of control and force
feedback best, and subsequently, this
device can be used for the control of

different robot arms[l]. To generate
force feedback the HC has to be equipped
with motors just like a robot and the
control electronics of a robot and a HC

can be made identical. In space tele-

robotic applications the control station
may be some distance away from the robot

so the control computations have to be
carried out at two sites, the local or

control station site and the remote or
robot site.

An evolving electronic system is under
development at the Jet Propulsion Labora-

tory (JPL) that was designed to solve the
motor control and computational tasks of

generalized bilateral control. This
electronic system (The Universal Motor
Controller or UMC) was used to build a

generalized bilateral robot control
system with PUMA 560 manipulators. These

manipulators are equipped with Smart End
Effectors (SEE) that sense the wrist and

the grasping forces. The signals from
the SEE are used to achieve force feed-
back to the hand controller and to

achieve shared manual and automatic con-

trol of robot arms. An example of this

shared control is when during peg inser-
tion into a hole the robot automatically
aligns the peg orientation while the

operator translates it into the hole.

It is noted that in conventional tele-

operation systems the master arm is a

one-to-one or scaled replica of the slave
arm and force feedback to the master arm

is not derived from forces and moments
sensed at the robot hand. Instead, it is

essentially derived from position error
between master and slave arm joints.

649

PRECEDING PAGE BLANK NOT FILMED

Note also that the control and computa-

tional system implied in generalized
bilateral control of robot arms also

forms a natural base for a supervisory

control system of telerobots. In a

supervisory control system, manual and
automatic control can be traded or shared

on the level of task space or work space

variables. Thus, evolving capabilities
in automation can easily be added to the
generalized bilateral control and compu-

tational system described in this paper.

The breadboard system currently consists
of: (i) two six degree-of-freedom (dof)
PUMA 560 robot arms, each equipped with
a JPL smart robot hand; the hand is a

parallel claw device equipped with a six

dof force-torque sensor, grasp force
sensors and local processing and control
electronics. (2) Two six dof generalized
Force-Reflecting Hand Controllers (FRHC),

each permits one-hand manual commands in
six directions, three translation and
three orientation commands either in

position or in rate mode; the FRHC is
unspecific to any manipulator, it can be
used for the control of various robot

arms with software modifications. (3)

TWO computing nodes for control and in-
formation display, one at the robot site
and one at the FRHC (control station)

site. (4) A computer graphics terminal
at the control station, utilizing (a) a

PARALLAX graphics board to generate real-
time sensor information displays and (b)
an IRIS graphics super workstation to

generate real-time perspective images of
robot arm motion either on a mono or on

a stereo monitor for preview or predic-

tivedisplays to aid motion planning or
control under communication time delay
conditions. The current status of the

dual-arm teleoperation system with smart
hands and with related control station

setting is shown in Fig. I.

In the first part of the paper the elec-
tronic architecture and design choices

are discussed. This is followed by the

description of the cUrrent teleoperation
system and the upcoming new developments.
The last part of the paper contains the
description of a graphics simulation sys-
tem connected to the dual-arm teleopera-

tion breadboard system. High-fidelity

graphic simulation of telerobots (called
Phantom Robots) is used to create preview
and predictive displays for planning and
for real-time control of telerobots under

several seconds communication time delay
conditions. High-fidelity graphics simu-

lation is obtained through appropriate
calibration techniques described at the

end of this paper.

ELECTRONIC ARCHITECTURE

The UMC architecture has been described

in several publications where it can be
found in more detail. See [2] and [3].

There are two tasks that have to be per-

formed by such a system.

- Motor control and feedback signal

sensing
- Mathematical computations

In our system an integrated approach was
used so that both of the above tasks are

carried out by a single electronic sys-
tem. Since the mathematical transforma-

tions involved are complex, they cannot
be performed by a single processor. This
necessitates inter-processor communica-

tion and synchronization besides inter-
node communication.

The following are the essential system
components for which design choices have
to be made:

- Power amplifiers

- Feedback data sensing elements
- Motor control hardware to joint

servo processor communication
- Processors

- Inter processor communication
- Inter node communication

- Programming language and develop-
ment environment

- Motor control algorithm
- Kinematic transformation algorithms

To achieve a compact, integrated package,
the power amplifiers and feedback data

sensing elements were developed in house.
These with the joint processors consti-
tute the UMC and have been described in

detail in [2]. In short, this electron-

ics consists of PWM power amplifiers for
up to 1 kW motors and provides sensing

of motion parameters at servo rates
(1000 Hz). THanks to the NASA technology

utilization program, this electronics is
now available commercially for up to I0
kW motors either brushed or brushless[4].

The communication from the motor control

elements to the joint processor is a
private bus called the BLX bus that

makes the joint motion parameters memory
mapped. It is noteable that with the UMC
up to 16 joints can be controlled by a

single joint servo processor.

The processor currently used is the NS
32016. There is a large number of pro-
cessors from which we could choose and

the 32000 family has proven to be a very

good candidate for our task. The family
has a number of processors with a wide
performance range and object level com-

patibility between the members. Its
assembly language has proven to be power-
ful as well as easy to use. The widely

used 6800 family would provide less

performance, less compatibility between

650

members and less symmetry in assembly

language. Two more advantages of the
32000 family are the relatively small
component count and relatively low bus

clock rate per unit of performance. The
small component count makes it easier to

produce a radiation hardened version of
a microprocessor, and the relatively slow
bus timing makes it possible to time
share devices or memory on the bus.

Figure 2 shows the overall architecture
of the multibus based distributed com-

puting for our two-node supervisory
control system, including the UMC. The
main electronic components with the
related functions are shown on the board

level in Figure 3 (1988 status).

To save development time we used the

DB32000 development board which comes
with a MULTIBUS interface. This forced

us to use MULTIBUS for inter-processor
communication. This is a lower band-
width bus than more recent 32 bit busses.
The available bandwidth is, however, more

than enough for our application, so the
use of MULTIBUS did not hamper the per-
formance of our system. With the up-

coming development of new processor
boards (still using the 32000 family), a
new proprietary bus (the ZBUS) will be
introduced that is optimized for high

bandwidth shared memory applications.

The inter-node communication currently
is performed by a 5 Mbaud fiber-optic

link that was developed in-house. Via
this fiber optic link a single packet is

transmitted every millisecond. This pac-
ket carries robot motion commands and

also serves as a way of synchronizing

all the computations in both the robot
and the hand controller nodes. The for-
ward communication link contains a soft-

ware delay loop to be able to introduce

an artificial time delay into the
system. This time delay may be set from
0 to 4 seconds in 1 millisecond incre-

ments, for time-delay experiments.

Currently the forward packet carries the
following information:

- Control mode

- Position change commands for the

six degrees of freedom
- Finger grasping force command
- Checksum

Control Modes

The control modes are the following:

- Freeze mode; the robot sets the

brake and servos the wrist joints

to their positions when freeze mode
was entered.

- Neutral mode; the robot is gravity

compensated but it may be moved by
hand to any position desired. Since

the gravity load is compensated by
software, when left alone the robot

will stay at whatever position it
was moved to.

- Current mode; the six bytes follow-

ing the mode byte will directly
command the currents of the six

joints. In current mode gravity

compensation is still active so at
0 current the robot will not move
unless there are external forces

acting on it.
- Joint mode; the six motion command

bytes will be added to the joint
space setpoints, moving the robot
in joint space.

- Task mode; the six motion command

bytes will be added to the Cartesian
setpoints causing robot motion in
the Cartesian frame. The so-called

task frame is permanently attached
to the laboratory, it cannot be re-
defined.

- Tool mode; the robot is commanded in
Cartesian tool frame. This frame is

defined by the robot wrist position
at the moment the tool mode is acti-
vated. This is a Cartesian coordi-

nate system that can be arbitrarily

redefined during operation.

If the mode byte of an incoming packet is
different from the active mode, the new

mode is not entered until i000 packets
come in that all have the same mode

bytes. During this intermediate period
the robot does not move, any incoming
motion bytes are ignored. A new mode
has to be active for one second before
the robot can be moved in that mode.

For example if the robot is in task mode,
the transmitted data carries relative

Cartesian coordinates. In every servo

loop a change in the range of -D to +D
is transmitted, where D iS the current

speed limit, typically 5 to I0. These

changes are added by the receiver to the
robot Cartesian setpoint number. This
method has a number of merits:

- Small communication_bandwidth used

- Error tolerance

- Velocity limiting
- Easy method of indexing the robot

It should be noted that this communica-

tion method does not cause any granu-
larity in robot speed whatsoever. It

simply limits the granularity of the
robot position to 1/10th of a mm. The

robot could not be positioned more
accurately than that anyway.

The reply packet from the roDot side
contains the following information:

- Currently active mode

651

- Wrist forces

- Finger forces
- Finger position

- Joint positions
- Cartesian (task) positions
- Checksum

Development System

The programming language used was the
assembly of the 32016 itself since this

promised the most performance and the
fastest results. It has to be noted that

the most convenient development environ-
ment such as a C cross compiler and UNIX

operating system does not necessarily
produce the fastest result and the best

program performance, Compilers have the
tendency to mask the real world of a

-processor from the programmer making it
harder to generate complex interrupt
hierarchies and hardware interfaces, We

used a development system that one of us
(Szakaly) wrote for the IBM-PC. This

system makes it possible to edit and

store the assembly source programs in
the PC as well as up and download object
files. All functions of this develop-

ment system are integrated so they pass
data to each other in the memory of the
IBM-AT. If the assembler finds an error

for example, it automatically puts the
user back into the editor with the

cursor on the error. The system also

keeps track of the files changed and
remembers where each file was modified

last. The typical assembly time for a
I000 line program is 15 seconds on a I0
MHz AT which includes the time it takes

to write the object output, the symbol
table and the memory map files to the
disk.

Portions of the teleoperation system
such as the force torque display were
developed in C using the SYS 32/20

development environment marketed by
National Semiconductor.

Control Algorithms

The motor control algorithm is a simple
PD control loop. The servo rate is 1000

Hz overall, without interpolation,
allowing high gains to be used with the

associated high tracking fidelity. The
position gains are about 0.i V/encoder

unit. The UMC code generator program is
used in the joint level controller.
This program assures safe robot control

by automatically generating the servo
code that controls the joints. There is
a set of parameters that have to be

specified once for every robot. These

parameters are stored in an electrically
erasable EEPROM chip. When the program
is activated it generates servo code and

executes it. There is no possibility of
breaking the robot due to human error in
the coding.

The code generator is very flexible, it

can control any number of motors up to
16, with any combination of hardware

elements such as encoders, pots, temper-
ature sensors, motors, brakes. All

polarities are menu items so, for exam-
ple, instead of having to switch the two

encoder wires, the user changes the en-
coder polarity from 'POS' to 'NEG' in

the menu. The code generator will use a
SUB instruction in place of an ADD in

the servo code to accommodate the nega-
tive encoder hookup. The motor, the
pot, the index and brake polarities can

similarly be changed from the menu. The
motor control processor interfaces to
the rest of the system via the shared

memory.

Since the remote node receives Cartesian

position setpoints, the inverse kinematic
transformation is needed to calculate the

robot joint position setpoints. This is

carried out by one of the processors on
the robot side. This trans£ormation was

implemented in integer arithmetic and
takes around 700 _sec to execute.
Force feedback to the HC is based on
robot position error as well as sensor
data so the robot end effector Cartesian

position has to be computed as well.
This is done by computing the robot for-
ward kinematics.

Breadboard Capabilities

As of 6/89 the dual-arm teleoperation
system consists of the following major
parts (see also Figure I):

- Two Hand Controller mechanisms

- Local node MULTIBUS cardcages

- Force torque graphic displays
- IRIS workstation with PUMA solid

shaded graphic simulation
- IBM-PCs as user interfaces

- PUMA 560 manipulators

- Remote node MULTIBUS cardcages
- Smart End Effectors

The local node cardcage contains the
following:

- Two joint interface cards (part of
local UMC)

- PWM amplifiers for 8 motors (part
of local UMC)

- Joint processor (part of local UMC)

- Kinematic transformation processor
- Communication processor with user

interface

- Graphics processor
- Parallax graphics card

The remote node cardcage contains the
following:

- Remote node UMC (3 cards and power
amplifiers)

652

- Communication processor
- Smart Hand processor

- Inverse kinematic processor
- Forward kinematic processor

The interfaces are as follows:

- Between cardcages: 5 Mbaud fiber

optic links
- From local node to IRIS robot sim-

ulation: Fiber optic RS232 at 9600
baud rate.

- From remote node to Smart End El-

lectors: Fiber optic RS232 at 9600

baud rate for the right hand, fiber
optic 3 Mbaud communication for the
left hand.

Figure 4 shows the block diagram of the
system in its current 1989 status and the

Interconnections. Figure 5 indicates the
timing of events and the sequence of com-
putations. All computations are carried
out at a 1000 Hz servo rate. The force

feedback signal is currently received at
a 125 Hz rate due to the limitation of
the RS232 communication channel used.

The total round trip time delay is 5 msec
for the position error based force feed-
back and it is around i0 msec for the

force-torque sensor based feedback.

The user has a large number of options
available through the user interface.

Every parameter can be changed on a
degree of freedom basis. It is possible
to activate a software spring on any

degree of freedom that pulls the user's
hand back to a center position. Any DOF
may be in position or rate mode or it

may be turned off. Any degree of free-
dom can have arbitrary force compliance

with a zero or non-zero force setpoint.
For example, orientation compliance with
zero torque setpoint amounts to automatic
peg alignment when performing peg inser-

tion into a hole. An X compliance with
non-zero force setpoint will press the
end effector against the task board and
will maintain contact force. Rate mode

is useful when motion over large dis-
placements is desired or when slow, con-

stant velocity motion is the requirement.

The breadboard system multi-mode control
flow diagram is shown in Figure 6. The
multi-mode control capabilities are des-
cribed in detail in [5]. Active (that

is, force-torque sensor referenced) com-
pliance control and its implementation
through a low pass filter is described
in detail in [6].

Extensive experiments have been conducted
to evaluate the usefulness of these op-

erating modes and force feedback. The
data show that force feedback brings an
improvement in terms of execution time

as well as total force required. The

shared control routines also bring about

additional improvements. Performance
evaluation experiments and results are
described in detail in a recent com-

prehensive report [7].

REAL-TIME GRAPHICS SIMULATION

A real time graphics simulation of the

PUMA arm motion has been accomplished by
using a Silicon Graphics IRIS-4D GT sys-

tem. The system is extremely fast both
in computation (i0 MIPS and i.I MFLOPS)
and in graphics display. The system can

draw 400,000 vectors or 40,000 polygons
(4-sided) per second with hidden surface

removal and lighting, Thus we could
easily achieve the update rate of the
PUMA arm graphics simulation to be as
fast as the display refresh rate, 60

frames/s for workstation display and 30
frames/s for NTSC video monitor display.
Perspective projection was assumed for

display, and double buffering was used
for the PUMA arm graphics animation to

avoid visible flickers or partial draw-
ings. Namely, two display buffers (two
24-bit-per-pixe] RGB color image memory

buffers) in contrast with a single dis-
play buffer'were used for display and
update in an alternate manner; while one

is used for display, the other is used
for new drawing, and then the two buf-
fers are switched. Both a solid model
with hidden surface removal and a wire-
frame model with hidden line removal are

available for our PUMA arm graphics
simulation/animation.

A geometric model of the PUMA 560 arm was
constructed by using only 6 object types:

6 boxes, 12 cylinders (frustums), 1 fore-
arm, 1 upperarm, 1 wrist, and 4 finger-
halves. The data structure of the box

specifies the box material (color), ori-
gin and size. The data structure of the
cylinder specifies the cylinder material,
origin, bottom and top radii, height, and

number of side panels to approximate the
side with polygons. The data structure
for the other object types were similarly

defined. The Denavit-Hartenberg repre-
sentation was used for the kinematic

modeling of the PUMA arm.

Hidden surface removal of the solid model

was done by use of the z-buffer of the
IRIS graphics system. The z-buffer (24
bits per pixel) contains the z-value data
indicating the distance (depth) from the

viewpoint for each pixel. At the begin-
ning of each display frame, the z-buffer
is initialized to the largest represent-
able z-value (7fffff in hex), while the

RGB buffer (24 bits per pixel) contain

ing the red, green, and blue color values
is initialized to the background color
value. Then during the drawing of poly-

gons, lines, points or characters, the

653

IRIS graphics system updates the RGB
buffer and the z-buffer only for those

plxels whose new z-value associated with
the current drawing is less than the

existing z-buffer value.

The lighting calculations were also done
by use of the IRIS graphics system hard-
ware. Once the user defines the material

properties (diffuse reflectance, specular
reflectance, specular shininess, emission
color, ambient reflectance, transpar-

ency), light source properties (color of

the light source, position or direction
of the light source, ambient light asso-
ciated with the light source), and light

model properties (ambient light presented
in the scehe, Scene attenuation factor,

local viewer property), the IRIS graphics
hardware automatically takes care of the

lighting calculations.

It is sometimes advantageous to use a
wire-frame model with hidden line removal

instead of using a solid model. When
the wire-frame model of the PUMA arm is
overlaid on the camera view, the viewer
can still see the actual camera view of
the arm. The wire-frame modei with

hidden lie removal was accomplished by
first drawing the arm with filled poly-

gons of the background color and then
drawing the arm again with solid lines
of white color. In order to avoid ap-

pearance of many broken lines, a small
positive depth offset (0.001 in the
normalized depth coordinate) was intro-
duced during the filled polygon drawing.

Pop-up menus were provided for the user
interface with the PUMA arm graphics

simulation. By using a mouse and select-
ing appropriate menu/submenu commands,
the user can perform view control (view

angles, view position, zoom), light posi-
tion control, PUMA arm motion control (6

joint angles and hand opening), screen
selection (workstation screen or NTSC

video monitor screen), graphics model
selection (solid model or wire-frame

model), camera calibration, or graphics

overlay.

Graphics Overlay on TV Camera Image

The real time graphics overlay of the
IRIS graphics output on the video camera

image was achieved by using an IRIS Video
genlock board. The genlock board enables
the IRIS graphics output to be synchro"

nized with the incoming video camera
signal. It also provides video switching
function. Namely, the video output of

the genlock board, which is connected to
the video monitor for display, can be
switched to either the incoming video

camera signal or the IRIS graphics output

signal, depending upon the alpha-plane
value for each pixel. When the alpha-

value of the pixel is 255 (ff in hex),

the video camera signal is selected for
the genlock board video output. When

the alpha-value is 0, the IRIS graphics
output is selected. Although the major

function of the 8-bit alpha-plane of the
IRIS graphics system is to allow blending
or mixing of two graphics images, in our

application we simply used the alpha-
plane to control the video switch for
the graphics image overlay (or super-

imposition) on the camera image. During
the IRIS graphics rendering, the alpha-

values for the background pixels are
assigned 255, while the alpha-values for
the pixels associated with the PUMA arm
are assigned 0. 1 In this way, the PUMA

arm graphics model generated by the IRIS
graphics system is overlaid on the real
camera view. The graphics overlay pro-

cedure is schematically summarized in
Figure 7.

Camera Calibration

In order to superimpose the PUMA arm

graphics model on the camera view of the
actual arm, camera calibration is neces-

sary. In our implementation, camera
calibration was achieved by an inter-
active cooperation between the human
operator and the system [8]. The

operator provides the correspondences
between object model points and camera

image points by using a mouse. There-
after the system computes the camera
calibration matrix, The calibration

procedure is summarized in Figure 8.

As the human operator selects the data

entry mode from the camera calibration
menu, the PUMA arm graphics model is
overlaid on the real camera view, both
the model and the actual camera view

appearing on the video monitor screen
(Fig. 9). At this staqe, the graphics
model view and the camera view are not

aligned. In fact, the human operator is
allowed to change the viewing condition
(view angle, view position, zoom) of the

model arm at any time during this data
entry mode, so that the human operator
can find and indicate corresponding

points easily. Thirty three vertices
(corner points) of the PUMA arm model

were pre-selected as object points for
Camera calibration. As seen in Figure
9, these object points are indicated by

square marks on the model arm. For
clarity, only visible object points are
marked.

The operator first picks an object point
by clicking the square with a mouse.

When the square is successfully picked,
the unfilled square is changed to a

filled square. The "pick" function call
of the IRIS graphics system is effi-
ciently used to identify which object

654

point is actually picked. After the
identification, the 3-D position of the
object point is directly obtained from

the geometric model of the P_ arm.
This picking process enables us to deter-

mine the 3-D position of the object
point, even though a mouse click gives
only 2-D screen coordinates. After

having picked an object point, the opera-
tor indicates, on the camera view of the

arm, the location of the corresponding

image point by clicking a mouse. This
picking-and-clicking procedure is repeat-
ed until all desired object points and

their corresponding image locations are
entered. The data entered are now used

to compute the camera calibration matrix.

The 4x3 camera calibration matrix des-

cribes the relation between 3-D object
points and their corresponding 2-D image

points by using homogeneous coordinates.
With the assumption that the camera view
can be modeled by an ideal pinhole camera

model as a perspective projection of the
3-D world onto the 2-D image plane, we
can consider the camera calibration

matrix M as being composed of several
simple transformations. While it is
possible to decompose the matrix in a

variety of ways, the particular decom-
position chosen is as follows:

M = (rotate)(translate)(project)

(scale)(crop) = (3-D viewing
transform)(perspective projection)
(2-D viewport transform)

The viewing transformation transforms
object coordinates (x,y,z) to camera

viewing coordinates (xv,Yv,Z v) by a
rotation and translation. The perspec-

tive projection transforms the viewing
coordinates to image-plane coordinates

(u,v). The viewport transformation
(window-to-viewport mapping) maps image-
plane coordinates to actual screen

coordinates (Us,V s) by scaling and
cropping (translation of the image

center) within the 2-D image plane.

u s = SxU + cx,

v s = SyV + Cy

There is a standard linear least-squares
method that can compute the camera cali-

bration matrix M, when 6 or more object
points and their corresponding images
are given [9], [i0]. Once M is obtained,

we can recover both intrinsic (2-D image
scaling and cropping parameters includ-

ing camera focal length) and extrinsic
(camera position and orientation) camera
parameters [Ii], [12]. However, our

testings indicate that recovering camera

parameters by this technique, especially
scaling and cropping parameters, is very
sensitive to measurement errors.

Fortunately, in or application the camera
scaling and cropping parameters can be
defined to be identical to the graphics

viewport parameters. The full size of
the camera view displayed on the video

monitor screen is normally equal to the
full size of the IRIS graphics output in
NTSC mode displayed on the same screen

since these two are synchronized by the
IRIS genlock board. Thus the scaling

and cropping parameters of the camera
view are assumed to be identical to the

graphics viewport parameters. In the
NTSC mode of the IRIS graphics system,
the screen size is defined as (XMIN,XMAX,

YMIN,YMAX) = (0,645,0,484). Thus, view-

port transformation parameters are given

by sx = cx =- XMAX/2 and Sy _ Cy
- YMAX/2, and so are the camera scaling

and cropping parameters. Thus, instead
of computing the camera calibration

matrix M, we first transform (Us,V s)
screen coordinates to (u,v) image-plane
coordinates for each image point by

u = (us - Cx)/Sx,
v = (v s - Cy)/Sy,

Then, we compute the camera calibration
matrix C that relates 3-D object coordi-

nates (x,y,z) and 2-D image-plane coordi-
nates (u,v) without 2-D image scaling and

cropping.

C = (rotate) (translate) (project)

, 3[rll r12 r13 °]Fl ° ° °]Ff ° ii]

= |r21 r22 r23 0||0 1 0 0||0 f
rs2 rss 01100 I 0|L00

LrO 1 0 0 IJLtlt2t31JL 0 0

where f is the camera focal length.

A linear least-squares method can be used
to determine the 12 elements of the 4x3

camera calibration matrix C, when 6 or

more object points and their correspond-

ing images are given [9],[10]. However,
the linear method does not guarantee the
orthonormality of the rotation matrix.

In our graphics overlay application, the
orthonormalized rotation matrix may be

preferred. Orthonormalization can be
applied after the linear method, but

this does not yield the least squares
solution. In general, a nonlinear least-

squares method has to be employed if we
wish to obtain the solution that satis-

fies the orthonormality of the rotation
matrix.

In the nonlinear method, instead of using
9 elements of a rotation matrix, three

angles (pan, tilt, swing) are used to
represent the rotation. In our current

design, all three camera calibration
algorithms are available: (i) a linear

least-squares method, (ii) orthonormali-
zation after the linear method, (iii) a

nonlinear least-squares method. The
algorithms abovecan be used for both
cases: whenthe camera focal length f
is given and when f is unknown. The
solutions of the camera calibration

matrix C obtained by the above algorithms
are stored in different files. TTne User

can pick any one of the camera calibra-
tion matrix solutions for rendering the
PUMA arm graphics model and super-

imposing on the camera view.

The PUMA arm graphics model superimposed
on the actual camera view after the

camera calibration is shown in Figure I0
for the surface model and in Figure ii
for the wire-frame model. Also indicated

on these figures is the predictive dis-
play "phantom robot" effect under com-

munication time delay condition. As seen
on the right side of Figures i0 and Ii,
the graphics robot image (the "phantom
robot") has moved off from the real robot

image on the screen to a location com-
manded by the operator. When the "phan-
tom robot" motion on the screen is con-

trolled by the operator in real time then
the Operator can see that motion against
the real environment on the screen in

real time, pr0vided tha£_tq_e_envir0nment
on the screen is a static one. The real

robot image will follow the motion of the

"phantom robot" graphics image after some
communication time delay and will stop at
the location of the "phantom robot" image

on the screen, provided that the geo-
metric calibration of the "phantom robot"

graphics image relative to the real
robot image on the screen was performed
correctly before the motion started.

CONCLUSION AND FUTURE PLANS

The main conclusion is that this end-to-

end dual-arm breadboard system elevates
teleoperation to a new level of capa-
bilities via the use of sensors, micro-

processors, novel electronics, and real-
time graphics displays. The new control
and task performance capabilities have

been verified and evaluated for single-
arm operation through a statistically
significant set of control experiments

as reported in [7]. Dual-arm task
performance experiments and time-delayed
control experiments using predictive

display graphics image of robot arm
("phantom robot") will be carried out in
the near future.

Future plans in control system and
electronics development affects the

following areas:

- Processors and bus architecture

- Communication
- Smart end effectors

- Software development environment

- Supervisory control software

The upcoming new devices are the following:

A new processor card containing two of the
NS 32016 processors using the new advanced

bus interface and 5 Mbit fiber optic links.
This processor card can also be used for
upcoming flight experiments.

Another processor card using the NS 32332,
the new advanced bus interface, 5 Mbit and
15 Mbyte fiber optic links.

A new smart hand featuring very high (10
kHz) data rates with a 12 bit A/D and the

new fiber optic link. The actual servo rate
will be limited by the host processor to

about 5 kHz, this data will be processed to
the 1 kHz rate of the rest of the system as
described in [13].

After some experience with the new assembler,

improvements will be made to the syntax such
that the usage will have the appearance of a

high level language. This will provide many
of the benefits of high level languages with-
out the associated performance and control
loss.

When the new hardware is available, the

control software will be upgraded to include
evolving supervisory control capabilities in
model- and sensor-referenced automatic

control of the dual-arm system.

The plans also include the upgrade of the
dual and non-redundant (six d.o.f.) arm

hardware to a dual and redundant (eight
d.o.f.) arm system.

Future plans in real-time computer graphics
development include (i) the use of computer
controlled TV cameras and (ii) graphics
overlays of object models on the TV image.

Use of computer controlled TV cameras will
provide the capability of using a single

complete camera calibration for a task
scenario since the camera parameters will-
automatically be known for all different
settings of camera position, orientation and

zoom. Graphics overlays of object models on
the TV image will enable preview/predictive
simulation of sensor-referenced control.

ACKNOWLEDGMENTS

Control electronics and software was

developed by Z. Szakaly, and the electronics
hardware was built by E. Barlow. Graphics

image development was done by S. Venema, and
graphics overlay calibration techniques were
developed by W.S. Kim.

The research described in this paper was
performed at the Jet Propulsion Laboratory,
California Institute of Technology, under
contract with the National Aeronautics and

Space Administration.

656

REFERENCES

[i]

[2]

[3]

[4]

[s]

[6]

Bejczy, A.K. Salisbury, J.K. Jr.,

"Controlling Remote Manipulators -
Through Kinesthetic Coupling." Com-
puters in Mechanical Engineering (CIME)

Vol. 2, No. i, July 1983, pp. 48-60.

[7]

Capabilities," Proceedings of NASA

Conference on Space Telerobotics,
Pasadena, CA, Jan. 31-Feb. 2, 1989.

Bejczy, A.K. Szakaly, Z.F., "A Syn-
chronized Computational Architecture [8]
for Generalized Bilateral Control of

Robot Arms," Proceedings of the
Conference on Advances in Intelligent
Robotic systems, by SPIE and the

International Society for Optical
Engineering Cambridge, MA, Nov. 1-6, [9]
1987.

Hannaford, B., Wood, L., Guggisberg,

B., McAffee, D., Zak, H., "Performance
Evaluation of a Six-Axis Generalized

Force-Reflecting Teleoperator," JPL
Publication 89-18, June 15, 1989.

Kim, W.S., and Stark, L., "Cooperative
Control of Visual Displays for Tele-

manipulation", Proc. IEEE Int. Conf. on
Robotics and Automation, pp. 1327-1332,
Scottsdale, AZ, 1989.

Sutherland, I.E., "Three-Dimensional

Data Input by Tablet", Proc. IEEE, vol.
62, no. 4, pp. 453-461,]974.

BeJczy, A.K. Szakaly, Z.F., "Universal I
Computer control System (UCCS) for [I0] Ballard, D.H., and Brown, C.M.,
Space Telerobots," Proceedings of the Computer Vision, Prentice-Hall, 1982.
IEEE International Conference on

Robotics and Automation, Raleigh, NC,

March 30-Apr. 3, 1987, pp. 318-324.

Motion Tek, Box 9, Lord Ave.,

Brunswick, NY 12180.

Bejczy, A.K., Hannaford, B., Szakaly,
Z.F., "Multi-Mode Manual Control in

Telerobotics," Proceedings of
ROMANSY'88, Udine, Italy, Sept. 12-15,
1988.

Szakaly, Z.F., Kim, W.S., Bejczy, A.K.,

"Force-Reflecting Teleoperated System
with Shared and Compliant Control

[II] Ganapathy, S., "Decomposition of
Transformation Matrices for Robot

Vision", IEEE Int. Conf. oin Robotics

and Automation, pp. 130-139, 1984.

[12] Strat, T.M., "Recovering the camera

parameters from a transformation
matrix", Proc. DARPA Image

Understanding Workshop, pp. 264-271,
1984.

[13] Bejczy, A.K., Szakaly, Z., Ohm, T.,
"Impact of End Effector Technology on

Telemanipulation Performance," - see
elsewhere in this Proceedings.

657

ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS

OF POOR QUALITY

Figure i. Laboratory Breadboard System for Advanced Dual-Arm Teleoperation (1989)

AUTOM&TICCONTROL ARRANGEMENT OF UMC
IN MULTIBUS

MOTORPO.ER/*_ _J'l_UNIVERSAL MOTOR CONTROLLER (UMC) ..I-

I ' ' J Im_l<l_ LOGIC POWER SUPPLY]._-_-IZO VAC MULTICARD

! MU_TmUSCARO_/tl I_l
, I i [[MOTOR POWER SUPPLY _ I MULTIBUS CARD _._'_./_ . _J

-**o .oTo.s _ rt JO,mpROCESSOR5/5/_/_._.,.. 1
I._L.._=NT ,NTER,.c,- Pow_.,,,Ps,,,,3,,j,.0. ,,.,o._ " JO"''NTER'AC''. "---/"

Figure 2, Electronics Architecture of Distributed Two-Node Supervisory Control System

_11 _ REMOTE ROBOT SITE
CONTROL STATION SITE II

RI_AL-TIME
amAPl_lc= O_¢,PLA_'

i. _ o.*..,_. _M oE_"=1]PROCESSOR j I

J ¢ouu_:_-_o_ _No pMRAtLI[LLIN|

%%,._ _ ,,,;%':o,>..,
.......=____:; ,..;o,,.:o,)..,p_j

I-. I,

REAL nile

II

' I oe'nc*,, ume

" J I
II --
I|
|1

| I _O_OT _x L_

I I COMPUTATIOk_

II

II
II
II

II
II

H

II

II

II

II

II

II

|I

.®

,..;_:o,>.,_:0.oo_

Figure 3. Board-Level Components of Distributed Two-Node Supervisory Control System

Electronics (1988)

658

Figure

FK/GRAV

t

TIM! DELAY |MEEDDEID 0 TO 4 114q_01WWlmS

4. Supervisory Control System

Electronics Upgrades (1989)

] .c _w¢ !

¢OMM

RI_IC

HC : HANO CONTROJ.LER N ; NONOT
FK : FORWARD KIHEMRT1CI IK : INVERSE KtNEMATI¢;$
COmM: COMMUNICATIONE UM¢: UNIVERSAL MOTOR COk"rNOLLrR _CTION$:

7 m__F9 Fn F_ F-9r-9n_F_O_
ttttt.Lt,HttttttitttttlH_HItt_h_tJ_l_ ®

r-- v-- _1-- r-- r--- r-- F--

®

®
®N. -- i_ l--

.... tlllll illtffl IIlllffllllfllllllllii{ Ifllli Hillif'lfll(ll_iilillli
-- -IF-gFqFg_I F-IFqF-gF_9_ ®

s I 2 I 4 s • • e m_©

1000 Hx LOCAL AND 200 Hx END-TO-END LOOP RATES, WITHOUT INTERPOLATION

Figure 5. Bilateral Control Communication

Timing Diagram

gUN WONKBTATION I

, I
X _X 6E

LOW

co::.o ,Ji lmk:O#T

aXF q

q: JOINT POSITION

: JOINT TORQUE

IK: INVERIi KINEMATICS

FK : FORWARD KINEllATICll

11
X: CAR'ITJIAN TAE_ liPA_E COOBOINATEI, POBITIOH/ORIENTATIONJl

HF : TASK _PAOE FOINCIL_IDIII_Q_; I: ROW PONCE D_,TA

FRIIC: FINt¢I.REtq.ICIllIG HAllO COffTflLUIR |l

FIT : FORGE/TORQUE

Figure 6. Advanced Teleoperation Control System Block Diagram

GRAPHICS SYSTEM NEEDS CAMERA CAL|SRATK)N MATRIX TO GENERATE

PUMA ARM GRAPHICS MODEL THAT ALIGNS ITSELF WITH CAMERA VIEW

OF ARM

[_CAMERA _ VIDEO

" CAMERA I SWITCHING GRAPHICS

_S-I_N_A_L _ PIXEL OVEALA_

G",,_r."_T._I,RiSGRAPHICS
._ I _;,_._; I VIDEO/GENLOCK
IRIS J "'_'_'_J BOARD

4D/GT I

Figure 7. Graphics Video Overlay Procedure

659

CAMERA V1EW

MODEL

HUMAN-ASSISTED IDATA ENTRy

3-0 OBJECT POiNTS

2-0 IMAGE POINTS

I COMPUTES THE [

CAMERA
CALIBRATION

MATRIX

CAMERA CALIBRATION
MATRIX

Figure

PUMA ARM ITSELF I$ USED FOR
CAMERA CALIBRATION

OPERATOR PICKS AN OBJECT POINT FROM

THE MODEL, THEN iNDICATES THE
CORRESPONDING IMAGE POINT ON THE
CAMERA ViEW

• LINEAR METHOD

• NEEOS | OR MORE OBJECT pOINTS
• OffTHONOJqMAL ROTATION MATRIX IS

NOT GUARANTEED

• NONLINEAR METHOD

* ROTATION IS REPRESENTED BY
THREE ANDLEB

• NEEDS 4 OR MORE OBJECT POINTS

8. Graphics Calibration Procedure

ORIGINAL PAGE IS

OF POOR QUALITY

ORfGINALPAGE

BLACK AND WHITE PHOTOGRAPH

Figure 9. Visual/Manual Calibration of Graphics Overlay

Figure I0. Solid Shaded Polygon Graphics "Phantom Robot" Calibrated Overlay and

Predictive Display

Figure II. Wire-Frame Graphics "Phantom Robot" Calibrated Overlay and Predictive Display

660

